Error Bounds for the Lanczos Methods for Approximating Matrix Exponentials

نویسنده

  • Qiang Ye
چکیده

In this paper, we present new error bounds for the Lanczos method and the shift-andinvert Lanczos method for computing e−τAv for a large sparse symmetric positive semidefinite matrix A. Compared with the existing error analysis for these methods, our bounds relate the convergence to the condition numbers of the matrix that generates the Krylov subspace. In particular, we show that the Lanczos method will converge rapidly if the matrix A is well-conditioned, regardless of what the norm of τA is. Numerical examples are given to demonstrate the theoretical bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Estimating a Largest Eigenvector by Polynomial Algorithms with a Random Start

In 7] and 8], the power and Lanczos algorithms with random start for estimating the largest eigenvalue of an n n large symmetric positive deenite matrix were analyzed. In this paper we continue this study by estimating an eigenvector corresponding to the largest eigenvalue. We analyze polynomial algorithms using Krylov information for two error criteria: the randomized error and the randomized ...

متن کامل

Convergence of Block Lanczos Method for Eigenvalue Clusters

The Lanczos method is often used to solve a large and sparse symmetric matrix eigenvalue problem. It is well-known that the single-vector Lanczos method can only find one copy of any multiple eigenvalue. To compute all or some of the copies of a multiple eigenvalue, one has to use the block Lanczos method which is also known to compute clustered eigenvalues much faster than the single-vector La...

متن کامل

A Restarted Lanczos Approximation to Functions of a Symmetric Matrix

Abstract. In this paper, we investigate a method for restarting the Lanczos method for approximating the matrix-vector product f(A)b, where A ∈ Rn×n is a symmetric matrix. For analytic f we derive a novel restart function that identifies the error in the Lanczos approximation. The restart procedure is then generated by a restart formula using a sequence of these restart functions. We present an...

متن کامل

2-Norm Error Bounds and Estimates for Lanczos Approximations to Linear Systems and Rational Matrix Functions

The Lanczos process constructs a sequence of orthonormal vectors vm spanning a nested sequence of Krylov subspaces generated by a hermitian matrix A and some starting vector b. In this paper we show how to cheaply recover a secondary Lanczos process, starting at an arbitrary Lanczos vector vm and how to use this secondary process to efficiently obtain computable error estimates and error bounds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013